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Convex sets

A set C ⊆ Rn is convex if for all x , y ∈ C and all 0 ≤ α ≤ 1,
we have: αx + (1− α)y ∈ C .

� every line segment must be contained in the set

� can include boundary or not

� can be finite or not
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Examples

1. Polyhedron

� A linear inequality aTi x ≤ bi is a halfspace.

� Intersections of halfspaces form a polyhedron: Ax ≤ b.

Halfspace in 3D Polyhedron in 3D.
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Examples

2. Ellipsoid

� A quadratic form looks like: xTQx

� If Q � 0 (positive definite; all eigenvalues positive), then
the set of x satisfying xTQx ≤ b is an ellipsoid.

Ellipsoid

16-4



Examples

3. Second-order cone constraint

� The set of points satisfying ‖Ax + b‖ ≤ cTx + d
is called a second-order cone constraint.

� Example: robust linear programming

Second order cone: ‖x‖ ≤ y
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Convex functions

A function f : D → R is a convex function if:

1. the domain D ⊆ Rn is a convex set

2. for all x , y ∈ D and 0 ≤ α ≤ 1, the function f satisfies:
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

� any line segment
joining points of f
lies above f .

� f is continuous, not
necessarily smooth

� f is concave if
−f is convex.
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Convex programs

minimize
x∈D

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . ,m

hj(x) = 0 for j = 1, . . . , r

� the domain is the set D

� the cost function is f0
� the inequality constraints are the fi for i = 1, . . . ,m.

� the equality constraints are the hj for j = 1, . . . , r .

� feasible set: the x ∈ D satisfying all constraints.

A model is convex if D is a convex set, all the fi are convex
functions, and the hj are affine functions (linear + constant)
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Examples

1. Linear program (LP)

� cost is affine

� all constraints are affine

� can be maximization or minimization

Important properties

� feasible set is a polyhedron

� can be optimal, infeasible,
or unbounded

� optimal point occurs at a
vertex

0.5 1.0 1.5 2.0

0.5

1.0

1.5

16-8



Examples

2. Convex quadratic program (QP)

� cost is a convex quadratic

� all constraints are affine

� must be a minimization

Important properties

� feasible set is a polyhedron

� optimal point occurs on
boundary or in interior
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Examples

3. Convex quadratically constrained QP (QCQP)

� cost is convex quadratic

� inequality constraints are convex quadratics

� equality constraints are affine

Important properties

� feasible set is an
intersection of ellipsoids

� optimal point occurs on
boundary or in interior
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Examples

4. Second-order cone program (SOCP)

� cost is affine

� inequality constraints are second-order cone constraints

� equality constraints are affine

Important properties

� feasible set is convex

� optimal point occurs on boundary or in interior
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Hierarchy of complexity

From simplest to most complicated:

1. linear program

2. convex quadratic program

3. convex quadratically constrained quadratic program

4. second-order cone program

5. semidefinite program

6. general convex program

Important notes

� more complicated just means that e.g. every LP is a SOCP
(by setting appropriate variables to zero), but a general
SOCP cannot be expressed as an LP.

� in general: strive for the simplest model possible
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Network flow problems

2

1

4

3

5
7

6

8

� Each edge (i , j) ∈ E has a flow xij ≥ 0.

� Each edge has a transportation cost cij .

� Each node i ∈ N is: a source if bi > 0, a sink if bi < 0, or
a relay if bi = 0. The sum of flows entering i must equal bi .

� Find the flow that minimizes total transportation cost while
satisfying demand at each node.
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Network flow problems
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� Capacity constraints: pij ≤ xij ≤ qij ∀(i , j) ∈ E .

� Balance constraint:
∑

j∈N xij = bi ∀i ∈ N .

� Minimize total cost:
∑

(i ,j)∈E cijxij

We assume
∑

i∈N bi = 0 (balanced graph). Otherwise, add
a dummy node with no cost to balance the graph.
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Network flow problems
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Expanded form:


1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
−1 −1 0 1 1 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0
0 0 0 −1 0 −1 1 1 0 0 0
0 0 0 0 −1 0 −1 0 1 1 0
0 0 0 0 0 0 0 −1 −1 0 1
0 0 0 0 0 0 0 0 0 −1 −1


A = incidence matrix



x13
x23
x24
x35
x36
x45
x56
x57
x67
x68
x78


=


b1
b2
b3
b4
b5
b6
b7
b8
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Integer solutions

minimize
x

cTx

subject to: Ax = b

p ≤ x ≤ q

� If A is a totally unimodular matrix then if demands bi
and capacities qij are integers, the flows xij are integers.

� All incidence matrices are totally unimodular.
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Examples

� Transportation problem: each node is a source or a sink

� Assignment problem: transportation problem where each
source has supply 1 and each sink has demand 1.

� Transshipment problem: like a transportation problem,
but it also has relay nodes (warehouses)

� Shortest path problem: single source, single sink, and
the edge costs are the path lengths.

� Max-flow problem: single source, single sink. Add a
feedback path with −1 cost and minimize the cost.
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Least squares

� We want to solve Ax = b where A ∈ Rm×n.

� Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax ≈ b.

� The least-squares approach: make Euclidean norm
‖Ax − b‖ as small as possible.

Standard form:

minimize
x

∥∥Ax − b
∥∥2

It’s an unconstrained convex QP.
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Example: curve-fitting

� We are given noisy data points (xi , yi).

� We suspect they are related by y = px2 + qx + r

� Find the p, q, r that best agrees with the data.

Writing all the equations:

y1 ≈ px21 + qx1 + r

y2 ≈ px22 + qx2 + r

...

ym ≈ px2m + qxm + r

=⇒


y1
y2
...
ym

 ≈

x21 x1 1
x22 x2 1
...

...
...

x2m xm 1


pq
r



� Also called regression.

16-19



Regularization

Regularization: Additional penalty term added to the cost
function to encourage a solution with desirable properties.

Regularized least squares:

minimize
x

‖Ax − b‖2 + λR(x)

� R(x) is the regularizer (penalty function)

� λ is the regularization parameter

� The model has different names depending on R(x).
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Examples

minimize
x

‖Ax − b‖2 + λR(x)

1. If R(x) = ‖x‖2 = x21 + x22 + · · ·+ x2n
It is called: L2 regularization, Tikhonov regularization, or
Ridge regression depending on the application. It has the
effect of smoothing the solution.

2. If R(x) = ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
It is called: L1 regularization or LASSO. It has the effect of
sparsifying the solution (x̂ will have few nonzero entries).

3. R(x) = ‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}
It is called L∞ regularization and it has the effect of
equalizing the solution (makes most components equal).
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Tradeoffs

� Suppose J1 = ‖Ax − b‖2 and J2 = ‖Cx − d‖2.

� We would like to make both J1 and J2 small.

� A sensible approach: solve the optimization problem:

minimize
x

J1 + λJ2

where λ > 0 is a (fixed) tradeoff parameter.

� Then tune λ to explore possible results.

I When λ→ 0, we place more weight on J1
I When λ→∞, we place more weight on J2
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Pareto curve

J1

J2 λ→ 0

λ→∞

feasible, but
strictly suboptimal

infeasible

P
areto-optimal points

� Pareto-optimal points can only improve in J1 at the
expense of J2 or vice versa.
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Example: Min-norm least squares

Underdetermined case: A ∈ Rm×n is a wide matrix
(m ≤ n), so Ax = b has infinitely many solutions.

� Look to make both ‖Ax − b‖2 and ‖x‖2 small

minimize
x

‖Ax − b‖2 + λ‖x‖2

� In the limit λ→∞, we get x = 0

� In the limit λ→ 0, we get the min-norm solution:

minimize
x

‖x‖2

subject to: Ax = b
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Duality

Intuition: Duality is all about finding solution bounds.

� If the primal problem is a minimization, all feasible points
of the primal are upper bounds on the optimal solution.

� The dual problem is a maximization. All feasible points of
the dual are lower bounds on the optimal solution.
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Example: LP duality

Primal problem (P)

maximize
x

cTx

subject to: Ax ≤ b
x ≥ 0

Dual problem (D)

minimize
λ

bTλ

subject to: ATλ ≥ c
λ ≥ 0

If x and λ are feasible points of (P) and (D) respectively:

cTx ≤ p? ≤ d? ≤ bTλ

� in the case of LPs, the dual of the dual is the primal
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Strong duality

We have strong duality if p? = d?

� When dealing with LPs, if either the primal or dual has a
finite solution, then strong duality holds.

� When dealing with general convex programs, if there is a
strictly feasible point then strong duality holds. This is
called Slater’s condition.

These sorts of conditions that can guarantee strong duality
are called constraint qualifications.
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Complementary slackness

If strong duality holds, then we also have the complementary
slackness property:

If the constraint fi(x) ≤ 0 has associated dual variable λi ,
then fi(x

?)λ?i = 0. This means that:

� If fi(x
?) < 0 (loose constraint), then λ?i = 0

� If λ?i > 0 (positive dual variable), then fi(x
?) = 0

Sensitivity: The size of λi indicates how much a change in
the constraint fi will affect the optimal cost.

16-28


	Review of convex optimization
	Convex sets and functions
	Convex programming models
	Network flow problems
	Least squares problems
	Regularization and tradeoffs
	Duality


