16. Review of convex optimization

- Convex sets and functions
- Convex programming models
- Network flow problems
- Least squares problems
- Regularization and tradeoffs
- Duality

Convex sets

A set $C \subseteq \mathbb{R}^{n}$ is convex if for all $x, y \in C$ and all $0 \leq \alpha \leq 1$, we have: $\alpha x+(1-\alpha) y \in C$.

- every line segment must be contained in the set
- can include boundary or not
- can be finite or not

convex set

nonconvex set

Examples

1. Polyhedron

- A linear inequality $a_{i}^{\top} x \leq b_{i}$ is a halfspace.
- Intersections of halfspaces form a polyhedron: $A x \leq b$.

Halfspace in 3D

Polyhedron in 3D.

Examples

2. Ellipsoid

- A quadratic form looks like: $x^{\top} Q x$
- If $Q \succ 0$ (positive definite; all eigenvalues positive), then the set of x satisfying $x^{\top} Q x \leq b$ is an ellipsoid.

Ellipsoid

Examples

3. Second-order cone constraint

- The set of points satisfying $\|A x+b\| \leq c^{\top} x+d$ is called a second-order cone constraint.
- Example: robust linear programming

Second order cone: $\|x\| \leq y$

Constraints $a_{i}^{\top} x+\rho\|x\| \leq b_{i}$

Convex functions

A function $f: D \rightarrow \mathbb{R}$ is a convex function if:

1. the domain $D \subseteq \mathbb{R}^{n}$ is a convex set
2. for all $x, y \in D$ and $0 \leq \alpha \leq 1$, the function f satisfies: $f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$

- any line segment joining points of f lies above f.
- f is continuous, not necessarily smooth
- f is concave if

Convex function

Nononvex function
$-f$ is convex.

Convex programs

$$
\begin{aligned}
\underset{x \in D}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \quad \text { for } i=1, \ldots, m \\
& h_{j}(x)=0 \quad \text { for } j=1, \ldots, r
\end{aligned}
$$

- the domain is the set D
- the cost function is f_{0}
- the inequality constraints are the f_{i} for $i=1, \ldots, m$.
- the equality constraints are the h_{j} for $j=1, \ldots, r$.
- feasible set: the $x \in D$ satisfying all constraints.

A model is convex if D is a convex set, all the f_{i} are convex functions, and the h_{j} are affine functions (linear + constant)

Examples

1. Linear program (LP)

- cost is affine
- all constraints are affine
- can be maximization or minimization

Important properties

- feasible set is a polyhedron
- can be optimal, infeasible, or unbounded
- optimal point occurs at a vertex

Examples

2. Convex quadratic program (QP)

- cost is a convex quadratic
- all constraints are affine
- must be a minimization

Important properties

- feasible set is a polyhedron
- optimal point occurs on boundary or in interior

Examples

3. Convex quadratically constrained QP (QCQP)

- cost is convex quadratic
- inequality constraints are convex quadratics
- equality constraints are affine

Important properties

- feasible set is an intersection of ellipsoids
- optimal point occurs on boundary or in interior

Examples

4. Second-order cone program (SOCP)

- cost is affine
- inequality constraints are second-order cone constraints
- equality constraints are affine

Important properties

- feasible set is convex
- optimal point occurs on boundary or in interior

Hierarchy of complexity

From simplest to most complicated:

1. linear program
2. convex quadratic program
3. convex quadratically constrained quadratic program
4. second-order cone program
5. semidefinite program
6. general convex program

Important notes

- more complicated just means that e.g. every LP is a SOCP (by setting appropriate variables to zero), but a general SOCP cannot be expressed as an LP.
- in general: strive for the simplest model possible

Network flow problems

- Each edge $(i, j) \in \mathcal{E}$ has a flow $x_{i j} \geq 0$.
- Each edge has a transportation cost $c_{i j}$.
- Each node $i \in \mathcal{N}$ is: a source if $b_{i}>0$, a sink if $b_{i}<0$, or a relay if $b_{i}=0$. The sum of flows entering i must equal b_{i}.
- Find the flow that minimizes total transportation cost while satisfying demand at each node.

Network flow problems

- Capacity constraints: $p_{i j} \leq x_{i j} \leq q_{i j}$
$\forall(i, j) \in \mathcal{E}$.
- Balance constraint: $\sum_{j \in \mathcal{N}} x_{i j}=b_{i}$
$\forall i \in \mathcal{N}$.
- Minimize total cost: $\sum_{(i, j) \in \mathcal{E}} c_{i j} x_{i j}$

We assume $\sum_{i \in \mathcal{N}} b_{i}=0$ (balanced graph). Otherwise, add a dummy node with no cost to balance the graph.

Network flow problems

Expanded form:

$$
\left[\begin{array}{rrrrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{13} \\
x_{23} \\
x_{24} \\
x_{35} \\
x_{36} \\
x_{45} \\
x_{56} \\
x_{57} \\
x_{67} \\
x_{68} \\
x_{78}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7} \\
b_{8}
\end{array}\right]
$$

Integer solutions

- If A is a totally unimodular matrix then if demands b_{i} and capacities $q_{i j}$ are integers, the flows $x_{i j}$ are integers.
- All incidence matrices are totally unimodular.

Examples

- Transportation problem: each node is a source or a sink
- Assignment problem: transportation problem where each source has supply 1 and each sink has demand 1 .
- Transshipment problem: like a transportation problem, but it also has relay nodes (warehouses)
- Shortest path problem: single source, single sink, and the edge costs are the path lengths.
- Max-flow problem: single source, single sink. Add a feedback path with -1 cost and minimize the cost.

Least squares

- We want to solve $A x=b$ where $A \in \mathbb{R}^{m \times n}$.
- Typical case of interest: $m>n$ (overdetermined). If there is no solution to $A x=b$ we try instead to have $A x \approx b$.
- The least-squares approach: make Euclidean norm $\|A x-b\|$ as small as possible.

Standard form:

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}
$$

It's an unconstrained convex QP.

Example: curve-fitting

- We are given noisy data points $\left(x_{i}, y_{i}\right)$.
- We suspect they are related by $y=p x^{2}+q x+r$
- Find the p, q, r that best agrees with the data.

Writing all the equations:

$$
\begin{gathered}
y_{1} \approx p x_{1}^{2}+q x_{1}+r \\
y_{2} \approx p x_{2}^{2}+q x_{2}+r \\
\quad \vdots \\
y_{m} \approx p x_{m}^{2}+q x_{m}+r
\end{gathered} \Longrightarrow\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right] \approx\left[\begin{array}{ccc}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
\vdots & \vdots & \vdots \\
x_{m}^{2} & x_{m} & 1
\end{array}\right]\left[\begin{array}{l}
p \\
q \\
r
\end{array}\right]
$$

- Also called regression.

Regularization

Regularization: Additional penalty term added to the cost function to encourage a solution with desirable properties.

Regularized least squares:

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda R(x)
$$

- $R(x)$ is the regularizer (penalty function)
- λ is the regularization parameter
- The model has different names depending on $R(x)$.

Examples

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda R(x)
$$

1. If $R(x)=\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$

It is called: L_{2} regularization, Tikhonov regularization, or Ridge regression depending on the application. It has the effect of smoothing the solution.
2. If $R(x)=\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$

It is called: L_{1} regularization or $L A S S O$. It has the effect of sparsifying the solution (\hat{x} will have few nonzero entries).
3. $R(x)=\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$

It is called L_{∞} regularization and it has the effect of equalizing the solution (makes most components equal).

Tradeoffs

- Suppose $J_{1}=\|A x-b\|^{2}$ and $J_{2}=\|C x-d\|^{2}$.
- We would like to make both J_{1} and J_{2} small.
- A sensible approach: solve the optimization problem:

$$
\underset{x}{\operatorname{minimize}} J_{1}+\lambda J_{2}
$$

where $\lambda>0$ is a (fixed) tradeoff parameter.

- Then tune λ to explore possible results.
- When $\lambda \rightarrow 0$, we place more weight on J_{1}
- When $\lambda \rightarrow \infty$, we place more weight on J_{2}

Pareto curve

- Pareto-optimal points can only improve in J_{1} at the expense of J_{2} or vice versa.

Example: Min-norm least squares

Underdetermined case: $A \in \mathbb{R}^{m \times n}$ is a wide matrix ($m \leq n$), so $A x=b$ has infinitely many solutions.

- Look to make both $\|A x-b\|^{2}$ and $\|x\|^{2}$ small

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda\|x\|^{2}
$$

- In the limit $\lambda \rightarrow \infty$, we get $x=0$
- In the limit $\lambda \rightarrow 0$, we get the min-norm solution:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|x\|^{2} \\
\text { subject to: } & A x=b
\end{aligned}
$$

Duality

Intuition: Duality is all about finding solution bounds.

- If the primal problem is a minimization, all feasible points of the primal are upper bounds on the optimal solution.
- The dual problem is a maximization. All feasible points of the dual are lower bounds on the optimal solution.

Example: LP duality

Primal problem (P)

Dual problem (D)


```
minimize}\mp@subsup{b}{\lambda}{\top}
    subject to: }\mp@subsup{A}{}{\top}\lambda\geq
    \lambda\geq0
```

If x and λ are feasible points of (P) and (D) respectively:

$$
c^{\top} x \leq p^{\star} \leq d^{\star} \leq b^{\top} \lambda
$$

- in the case of LPs, the dual of the dual is the primal

Strong duality

We have strong duality if $p^{\star}=d^{\star}$

- When dealing with LPs, if either the primal or dual has a finite solution, then strong duality holds.
- When dealing with general convex programs, if there is a strictly feasible point then strong duality holds. This is called Slater's condition.

These sorts of conditions that can guarantee strong duality are called constraint qualifications.

Complementary slackness

If strong duality holds, then we also have the complementary slackness property:

If the constraint $f_{i}(x) \leq 0$ has associated dual variable λ_{i}, then $f_{i}\left(x^{\star}\right) \lambda_{i}^{\star}=0$. This means that:

- If $f_{i}\left(x^{\star}\right)<0$ (loose constraint), then $\lambda_{i}^{\star}=0$
- If $\lambda_{i}^{\star}>0$ (positive dual variable), then $f_{i}\left(x^{\star}\right)=0$

Sensitivity: The size of λ_{i} indicates how much a change in the constraint f_{i} will affect the optimal cost.

