16. Review of convex optimization

- Convex sets and functions
- Convex programming models
- Network flow problems
- Least squares problems
- Regularization and tradeoffs
- Duality

Convex sets

A set $C \subseteq \mathbb{R}^n$ is **convex** if for all $x, y \in C$ and all $0 \le \alpha \le 1$, we have: $\alpha x + (1 - \alpha)y \in C$.

- every line segment must be contained in the set
- can include boundary or not
- can be finite or not

1. Polyhedron

- A linear inequality $a_i^T x \leq b_i$ is a halfspace.
- Intersections of halfspaces form a polyhedron: $Ax \leq b$.

Halfspace in 3D

Polyhedron in 3D.

2. Ellipsoid

- A quadratic form looks like: $x^T Qx$
- If $Q \succ 0$ (positive definite; all eigenvalues positive), then the set of x satisfying $x^TQx \le b$ is an *ellipsoid*.

Ellipsoid

3. Second-order cone constraint

- The set of points satisfying $||Ax + b|| \le c^T x + d$ is called a *second-order cone constraint*.
- Example: robust linear programming

Second order cone: $||x|| \le y$

Constraints $a_i^\mathsf{T} x + \rho ||x|| \le b_i$

Convex functions

A function $f: D \to \mathbb{R}$ is a **convex function** if:

- **1.** the domain $D \subseteq \mathbb{R}^n$ is a convex set
- **2.** for all $x, y \in D$ and $0 \le \alpha \le 1$, the function f satisfies: $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$

- any line segment joining points of f lies above f.
- f is continuous, not necessarily smooth
- f is concave if
 f is convex.

Convex programs

```
minimize f_0(x)

subject to: f_i(x) \leq 0 for i=1,\ldots,m

h_j(x)=0 for j=1,\ldots,r
```

- the domain is the set D
- the cost function is f₀
- the inequality constraints are the f_i for i = 1, ..., m.
- the equality constraints are the h_j for $j=1,\ldots,r$.
- **feasible set**: the $x \in D$ satisfying all constraints.

A model is **convex** if D is a convex set, all the f_i are convex functions, and the h_j are affine functions (linear + constant)

1. Linear program (LP)

- cost is affine
- all constraints are affine
- can be maximization or minimization

- feasible set is a polyhedron
- can be optimal, infeasible, or unbounded
- optimal point occurs at a vertex

2. Convex quadratic program (QP)

- cost is a convex quadratic
- all constraints are affine
- must be a minimization

- feasible set is a polyhedron
- optimal point occurs on boundary or in interior

3. Convex quadratically constrained QP (QCQP)

- cost is convex quadratic
- inequality constraints are convex quadratics
- equality constraints are affine

- feasible set is an intersection of ellipsoids
- optimal point occurs on boundary or in interior

4. Second-order cone program (SOCP)

- cost is affine
- inequality constraints are second-order cone constraints
- equality constraints are affine

- feasible set is convex
- optimal point occurs on boundary or in interior

Hierarchy of complexity

From simplest to most complicated:

- 1. linear program
- 2. convex quadratic program
- 3. convex quadratically constrained quadratic program
- 4. second-order cone program
- 5. semidefinite program
- **6.** general convex program

Important notes

- more complicated just means that e.g. every LP is a SOCP (by setting appropriate variables to zero), but a general SOCP cannot be expressed as an LP.
- in general: strive for the simplest model possible

Network flow problems

- Each edge $(i,j) \in \mathcal{E}$ has a flow $x_{ij} \geq 0$.
- Each edge has a transportation cost c_{ij} .
- Each node $i \in \mathcal{N}$ is: a source if $b_i > 0$, a sink if $b_i < 0$, or a relay if $b_i = 0$. The sum of flows entering i must equal b_i .
- Find the flow that minimizes total transportation cost while satisfying demand at each node.

Network flow problems

• Capacity constraints: $p_{ij} \le x_{ij} \le q_{ij}$

 $\forall (i,j) \in \mathcal{E}$.

• Balance constraint: $\sum_{j \in \mathcal{N}} x_{ij} = b_i$

 $\forall i \in \mathcal{N}$.

• Minimize total cost: $\sum_{(i,j)\in\mathcal{E}} c_{ij}x_{ij}$

We assume $\sum_{i \in \mathcal{N}} b_i = 0$ (balanced graph). Otherwise, add a dummy node with no cost to balance the graph.

Network flow problems

Expanded form:

Integer solutions

minimize
$$c^{\mathsf{T}}x$$

subject to: $Ax = b$
 $p \le x \le q$

- If A is a **totally unimodular matrix** then if demands b_i and capacities q_{ij} are integers, the flows x_{ij} are integers.
- All incidence matrices are totally unimodular.

- Transportation problem: each node is a source or a sink
- **Assignment problem:** transportation problem where each source has supply 1 and each sink has demand 1.
- Transshipment problem: like a transportation problem, but it also has relay nodes (warehouses)
- **Shortest path problem:** single source, single sink, and the edge costs are the path lengths.
- Max-flow problem: single source, single sink. Add a feedback path with -1 cost and minimize the cost.

Least squares

- We want to solve Ax = b where $A \in \mathbb{R}^{m \times n}$.
- Typical case of interest: m > n (overdetermined). If there is no solution to Ax = b we try instead to have $Ax \approx b$.
- The least-squares approach: make Euclidean norm ||Ax b|| as small as possible.

Standard form:

$$\underset{x}{\text{minimize}} \quad \left\| Ax - b \right\|^2$$

It's an unconstrained convex QP.

Example: curve-fitting

- We are given noisy data points (x_i, y_i) .
- We suspect they are related by $y = px^2 + qx + r$
- Find the p, q, r that best agrees with the data.

Writing all the equations:

$$y_{1} \approx px_{1}^{2} + qx_{1} + r
 y_{2} \approx px_{2}^{2} + qx_{2} + r
 \vdots
 y_{m} \approx px_{m}^{2} + qx_{m} + r$$

$$\Longrightarrow \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix} \approx \begin{bmatrix} x_{1}^{2} & x_{1} & 1 \\ x_{2}^{2} & x_{2} & 1 \\ \vdots & \vdots & \vdots \\ x_{m}^{2} & x_{m} & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Also called regression.

Regularization

Regularization: Additional penalty term added to the cost function to encourage a solution with desirable properties.

Regularized least squares:

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|^2 + \lambda R(x)$$

- R(x) is the regularizer (penalty function)
- ullet λ is the regularization parameter
- The model has different names depending on R(x).

$$\underset{x}{\mathsf{minimize}} \quad \|Ax - b\|^2 + \lambda R(x)$$

- 1. If $R(x) = ||x||^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ It is called: L_2 regularization, Tikhonov regularization, or Ridge regression depending on the application. It has the effect of smoothing the solution.
- **2.** If $R(x) = ||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$ It is called: L_1 regularization or LASSO. It has the effect of sparsifying the solution (\hat{x} will have few nonzero entries).
- **3.** $R(x) = ||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ It is called L_{∞} regularization and it has the effect of equalizing the solution (makes most components equal).

Tradeoffs

- Suppose $J_1 = ||Ax b||^2$ and $J_2 = ||Cx d||^2$.
- We would like to make **both** J_1 and J_2 small.
- A sensible approach: solve the optimization problem:

$$\underset{\times}{\mathsf{minimize}} \quad J_1 + \lambda J_2$$

where $\lambda > 0$ is a (fixed) tradeoff parameter.

- Then tune λ to explore possible results.
 - ▶ When $\lambda \to 0$, we place more weight on J_1
 - When $\lambda \to \infty$, we place more weight on J_2

Pareto curve

• Pareto-optimal points can only improve in J_1 at the expense of J_2 or vice versa.

Example: Min-norm least squares

Underdetermined case: $A \in \mathbb{R}^{m \times n}$ is a wide matrix $(m \le n)$, so Ax = b has infinitely many solutions.

• Look to make both $||Ax - b||^2$ and $||x||^2$ small

$$\underset{x}{\text{minimize}} \quad \|Ax - b\|^2 + \lambda \|x\|^2$$

- In the limit $\lambda \to \infty$, we get x = 0
- In the limit $\lambda \to 0$, we get the min-norm solution:

minimize
$$||x||^2$$

subject to: $Ax = b$

Duality

Intuition: Duality is all about finding solution bounds.

- If the primal problem is a minimization, all feasible points of the primal are upper bounds on the optimal solution.
- The dual problem is a maximization. All feasible points of the dual are lower bounds on the optimal solution.

Example: LP duality

Primal problem (P)

maximize $c^{\mathsf{T}}x$ subject to: $Ax \leq b$ $x \geq 0$

Dual problem (D)

minimize
$$b^{\mathsf{T}}\lambda$$
 subject to: $A^{\mathsf{T}}\lambda \geq c$ $\lambda \geq 0$

If x and λ are feasible points of (P) and (D) respectively:

$$c^{\mathsf{T}}x \leq p^{\star} \leq d^{\star} \leq b^{\mathsf{T}}\lambda$$

in the case of LPs, the dual of the dual is the primal

Strong duality

We have **strong duality** if $p^* = d^*$

- When dealing with LPs, if either the primal or dual has a finite solution, then strong duality holds.
- When dealing with general convex programs, if there is a strictly feasible point then strong duality holds. This is called Slater's condition.

These sorts of conditions that can guarantee strong duality are called **constraint qualifications**.

Complementary slackness

If strong duality holds, then we also have the complementary slackness property:

If the constraint $f_i(x) \leq 0$ has associated dual variable λ_i , then $f_i(x^*)\lambda_i^* = 0$. This means that:

- If $f_i(x^*) < 0$ (loose constraint), then $\lambda_i^* = 0$
- If $\lambda_i^{\star} > 0$ (positive dual variable), then $f_i(x^{\star}) = 0$

Sensitivity: The size of λ_i indicates how much a change in the constraint f_i will affect the optimal cost.