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Convex sets

Aset C C R"isconvexifforallx,y € Candall0 < a <1,
we have: ax + (1 —a)y € C.

e every line segment must be contained in the set
e can include boundary or not

e can be finite or not

convex set nonconvex set



Examples

1. Polyhedron

e A linear inequality a] x < b; is a halfspace.
e Intersections of halfspaces form a polyhedron: Ax < b.

Halfspace in 3D Polyhedron in 3D.



Examples

2. Ellipsoid

e A quadratic form looks like: xT Qx

e If Q = 0 (positive definite; all eigenvalues positive), then
the set of x satisfying x' Qx < b is an ellipsoid.

Ellipsoid



Examples

3. Second-order cone constraint

e The set of points satisfying ||[Ax + b|| < c"x +d
is called a second-order cone constraint.

e Example: robust linear programming
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Convex functions

A function f : D — R is a convex function if:
1. the domain D C R" is a convex set

2. forall x,y € D and 0 < o < 1, the function f satisfies:
flax + (1 —a)y) < af(x) + (1 — a)f(y)

. f(x) f(x)

e any line segment

e . 3 3

joining points of f ] y i

lies above f. y

. . 1 X 1 x

e f is continuous, not

necessarily smooth <+ |+ 2 s &« * 4 | 1 2 s &

Convex function Nononvex function

e f is concave if
—f is convex.



Convex programs

minimize fo(x)

subject to:  fi(x) <0 fori=1,...,m
hi(x) =0 forj=1,...,r

the domain is the set D

the cost function is fy

the inequality constraints are the f; for i=1,..., m.

the equality constraints are the h; for j =1,...,r.

e feasible set: the x € D satisfying all constraints.

A model is convex if D is a convex set, all the f; are convex
functions, and the h; are affine functions (linear 4 constant)



Examples

1. Linear program (LP)

e cost is affine

e all constraints are affine

e can be maximization or minimization

Important properties 157

e feasible set is a polyhedron

e can be optimal, infeasible, 1.0
or unbounded

e optimal point occurs at a 0.5f
vertex




Examples

2. Convex quadratic program (QP)
® cost is a convex quadratic
e all constraints are affine

e must be a minimization

Important properties
e feasible set is a polyhedron

e optimal point occurs on
boundary or in interior




Examples

3. Convex quadratically constrained QP (QCQP)
e cost is convex quadratic

e inequality constraints are convex quadratics

e equality constraints are affine

Important properties 157
e feasible set is an
intersection of ellipsoids 10l

e optimal point occurs on

boundary or in interior 05l

0.5 1.0 1.5 2.0
16-10



Examples

4. Second-order cone program (SOCP)
e cost is affine

e inequality constraints are second-order cone constraints

e equality constraints are affine

Important properties

e feasible set is convex

e optimal point occurs on boundary or in interior
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Hierarchy of complexity

From simplest to most complicated:

linear program

convex quadratic program

convex quadratically constrained quadratic program
second-order cone program

semidefinite program

S G

general convex program

Important notes

e more complicated just means that e.g. every LP is a SOCP
(by setting appropriate variables to zero), but a general
SOCP cannot be expressed as an LP.

e in general: strive for the simplest model possible
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Network flow problems

Each edge (i,j) € € has a flow x; > 0.

Each edge has a transportation cost cj;.

Each node i € N is: a source if b; > 0, a sink if b; < 0, or
a relay if bj = 0. The sum of flows entering i must equal b;.

Find the flow that minimizes total transportation cost while
satisfying demand at each node.
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Network flow problems

e Capacity constraints: p; < x; < g; v(i,j) € €.

e Balance constraint: } .\ x; = b; VieN.

e Minimize total cost: }_; . Cjx;

We assume ) .- b = 0 (balanced graph). Otherwise, add
a dummy node with no cost to balance the graph.

16-14



s E——
88T ELEE
[ |
— 02388285582
FRXLRRXIRXRIX KX
—
cocoocoococo~ -
[oNeNoloNoll ool sl
I x
Oococoo-H=O T
s | ..a.lm
CoOO0O OO
| €
Q coocoHHOO O
-— | O
0 coo--HOOO m
=] | S
bt co—~oo J*AU ° 5
o =
co—~o n coco '~
mw .. oMOHOOOO
o £ | =
-_— f- O - OO0OO0O0OO0o
(arw NS [
~O-HOO0OO0O0O
X 2 |
I |
P ©
o =
©
3 e
..nu, L

16-15



Integer solutions

minimize c¢'x
X

subject to: Ax=0b
p<x<gq

e |f Ais a totally unimodular matrix then if demands b;
and capacities g are integers, the flows x; are integers.

e All incidence matrices are totally unimodular.
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Examples

e Transportation problem: each node is a source or a sink

e Assignment problem: transportation problem where each
source has supply 1 and each sink has demand 1.

e Transshipment problem: like a transportation problem,
but it also has relay nodes (warehouses)

e Shortest path problem: single source, single sink, and
the edge costs are the path lengths.

e Max-flow problem: single source, single sink. Add a
feedback path with —1 cost and minimize the cost.
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Least squares

e We want to solve Ax = b where A € R™*",

e Typical case of interest: m > n (overdetermined). If there
is no solution to Ax = b we try instead to have Ax =~ b.

e The least-squares approach: make Euclidean norm
||Ax — b|| as small as possible.

Standard form:

L. 2
minimize ||Ax— b||
X

It's an unconstrained convex QP.
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Example: curve-fitting

e We are given noisy data points (x;, ;).
e We suspect they are related by y = px® 4+ gx + r
e Find the p, g, r that best agrees with the data.

Writing all the equations:

2
n=pxqgtagx+r " X2 ox 1

Y2 N pXg + qxa 1 ¥2 X2 x 1] [P
= ||~ o

!
Q

Y R PXoy + QX + 1 Y] [ X 1

e Also called regression.
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Regularization

Regularization: Additional penalty term added to the cost
function to encourage a solution with desirable properties.

Regularized least squares:

minimize [|Ax — b|* + AR(x)

e R(x) is the regularizer (penalty function)
e )\ is the regularization parameter

e The model has different names depending on R(x).
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Examples

minimize ||Ax — b||? + AR(x)

1. FR(x)=|x|P=x2+ x5+ -+ x2
It is called: L, regularization, Tikhonov regularization, or
Ridge regression depending on the application. It has the
effect of smoothing the solution.

2. If R(x) = ||x|l1 = |x| + || + -+ + | x4]
It is called: Ly regularization or LASSO. It has the effect of
sparsifying the solution (X will have few nonzero entries).

3. R(X) = HXHOO = max{|x1|, ’X2|7 ceey ’Xn’}
It is called L., regularization and it has the effect of
equalizing the solution (makes most components equal).

16-21



Tradeoffs

Suppose J; = ||Ax — b||? and J, = ||Cx — d||>.

We would like to make both J; and J, small.

A sensible approach: solve the optimization problem:

minimize J; + A\

where A\ > 0 is a (fixed) tradeoff parameter.

Then tune X to explore possible results.

» When A — 0, we place more weight on J;
» When A — oo, we place more weight on J,
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Pareto curve
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e Pareto-optimal points can only improve in J; at the
expense of J, or vice versa.
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Example: Min-norm least squares

Underdetermined case: A € R™*" is a wide matrix
(m < n), so Ax = b has infinitely many solutions.

e Look to make both |[|[Ax — b||? and || x| small

minimize  ||Ax — b||> + \||x||?

e In the limit A — oo, we get x =0
e |n the limit A — 0, we get the min-norm solution:
A . . 2
minimize | x|
X

subject to: Ax=0b
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Duality

Intuition: Duality is all about finding solution bounds.

e |f the primal problem is a minimization, all feasible points
of the primal are upper bounds on the optimal solution.

e The dual problem is a maximization. All feasible points of
the dual are lower bounds on the optimal solution.
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Example: LP duality

Primal problem (P) Dual problem (D)
maximize c'x mini/\mize b™
subject to: Ax < b subject to: AT\ > ¢

x>0 A>0

If x and A are feasible points of (P) and (D) respectively:

cTx<p <d" <b"\

e in the case of LPs, the dual of the dual is the primal
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Strong duality
We have strong duality if p* = d*

e When dealing with LPs, if either the primal or dual has a
finite solution, then strong duality holds.

e When dealing with general convex programs, if there is a
strictly feasible point then strong duality holds. This is
called Slater’s condition.

These sorts of conditions that can guarantee strong duality
are called constraint qualifications.
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Complementary slackness

If strong duality holds, then we also have the complementary
slackness property:

If the constraint f;(x) < 0 has associated dual variable J;,
then f;(x*)A\* = 0. This means that:

e If fi(x*) < 0 (loose constraint), then A\¥ =0
e If A\¥ > 0 (positive dual variable), then f;(x*) =0

Sensitivity: The size of \; indicates how much a change in
the constraint f; will affect the optimal cost.
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